構造生物学研究部

研究業績

Structural biology of the Cvt pathway.
A. Yamasaki and N. N. Noda.
J. Mol. Biol. 2017, 429, 531-542.
Structural biology of the core autophagy machinery.
H. Suzuki, T. Osawa, Y. Fujioka and N. N. Noda.
Curr. Opin. Struct. Biol. 2016, 43, 10-17.
The intrinsically disordered protein Atg13 mediates supramolecular assembly of autophagy initiation complexes.
H. Yamamoto, Y. Fujioka, S. W. Suzuki, D. Noshiro, H. Suzuki, C. Kondo-Kakuta, Y. Kimura, H. Hirano, T. Ando, N. N. Noda and Y. Ohsumi.
Dev. Cell 2016, 38, 86-99.
Structural basis for receptor-mediated selective autophagy of aminopeptidase I aggregates.
A.Yamasaki, Y. Watanabe, W. Adachi, K. Suzuki, K. Matoba, H. Kirisako, H. Kumeta, H. Nakatogawa, Y. Ohsumi, F. Inagaki and N. N. Noda
Cell Rep. 2016, 16, 19-27.
Small differences make a big impact: Structural insights into the differential function of the 2 Atg8 homologs in C. elegans.
F. Wu, P. Wang, Y. Shen, N. N. Noda and H. Zhang.
Autophagy 2016, 12, 606-607.
Structural basis for the regulation of enzymatic activity of Regnase-1 by domain-domain interactions.
M. Yokogawa, T. Tsushima, N. N. Noda, H. Kumeta, Y. Enokizono, K. Yamashita, D. M. Standley, O. Takeuchi, S. Akira and F. Inagaki.
Sci. Rep. 2016, 6, 22324.
Atg101: not just an accessory subunit in the autophagy-initiation complex.
N. N. Noda and N. Mizushima.
Cell Struct. Funct. 2016,41,13-20.
高等生物のオートファジー始動に必須な因子Atg101の構造と機能
鈴木浩典、野田展生
日本結晶学会誌 2015, 57, 324-330
Structural basis of the differential function of the two C. elegans Atg8 homologs, LGG-1 and LGG-2, in autophagy.
F. Wu, Y. Watanabe, X. Y. Guo, X. Qi, P. Wang, H. Y. Zhao, Z. Wang, Y. Fujioka, H. Zhang, J. Q. Ren, T. C. Fang, Y. X. Shen, W. Feng, J. J. Hu, N. N. Noda and H. Zhang.
Mol. Cell 2015, 60, 914-929.
The thermotolerant yeast kluyveromyces marxianus is a useful organism for structural and biochemical studies of autophagy.
H. Yamamoto, T. Shima, M. Yamaguchi, Y. Mochizuki, H. Hoshida, S. Kakuta, C. Kondo-Kakuta, N. N. Noda, F. Inagaki, T. Itoh, R. Akada and Y. Ohsumi
J. Biol. Chem. 2015, 290, 29506-29518.
Open and closed HORMAs regulate autophagy initiation.
H. Suzuki, T. Kaizuka, N. Mizushima and N. N. Noda
Autophagy 2015, 11, 2123-2124.
オートファジーの始動を制御する複合体の立体構造
藤岡優子,野田展生
日本結晶学会誌 2015, 57, 191-197
Structure of the Atg101-Atg13 complex reveals essential roles of Atg101 in mammalian autophagy initiation.
H. Suzuki, T. Kaizuka, N. Mizushima and N. N. Noda.
Nat. Struct. Mol. Biol. 2015, 22, 572-580
Atg1 family kinases in autophagy initiation.
N. N. Noda and Y. Fujioka.
Cell. Mol. Life Sci. 2015, 72, 3083-3096
Mechanisms of autophagy.
N.N. Noda and F. Inagaki.
Annu. Rev. Biophys.2015 44, 101-122
「オートファゴソームの形成にかかわるタンパク質の構造と分子機能」
野田展生,稲垣冬彦
領域融合レビュー 2014, 3, e012.
オートファジーの作動機構
野田展生、稲垣冬彦
実験医学   2014,  32,  1612-1616.
Structural basis of starvation-induced assembly of the autophagy initiation complex.
Y. Fujioka, S. W. Suzuki, H. Yamamoto, C. Kondo-Kakuta, Y. Kimura, H. Hirano, R. Akada, F. Inagaki, Y. Ohsumi and N. N. Noda.
Nat. Struct. Mol. Biol.  2014,  21,  513-521.
Proteomic profiling of autophagosome cargo in Saccharomyces cerevisiae.
K. Suzuki, S. Nakamura, M. Morimoto, K. Fujii, N. N. Noda, F. Inagaki and Y. Ohsumi.
PLOS ONE  2014,  9,  e91651.
オートファジーの構造生物学
野田展生
生化学  2013,  85,  762-774.
Atg18 phosphoregulation controls organellar dynamics by modulating its
phosphoinositide-binding activity.
N. Tamura, M. Oku, M. Ito, N. N. Noda, F. Inagaki and Y. Sakai.
J. Cell Biol.  2013,  202,  685-698.
Two-colored FCS screening for LC3-p62 interaction inhibitors.
K. Tsuganezawa, Y. Shinohara, N. Ogawa, S. Tsuboi, N. Okada, M. Mori, S.
Yokoyama, N. N. Noda, F. Inagaki, Y. Ohsumi and A. Tanaka.
J. Biolmol. Screen. 2013,  18,  1103-1109.
オートファジーの構造生物学 主要Atg因子の構造の最新像と未解決課題
野田展生
実験医学  2013,  31,  1355-1361.
Atg12-Atg5 conjugate enhances E2 activity of Atg3 by rearranging its
catalytic site.
M. Sakoh-Nakatogawa, K. Matoba, E. Asai, H. Kirisako, J. Ishii, N. N. Noda,
F. Inagaki, H. Nakatogawa and Y. Ohsumi.
Nat. Struct. Mol. Biol.  2013,  20,  433-439.
Structure of the Atg12-Atg5 conjugate reveals a platform for
stimulating Atg8-PE conjugation.
N. N. Noda, Y. Fujioka, T. Hanada, Y. Ohsumi and F. Inagaki.
EMBO Rep.   2013,   14,   206-211.
Crystallographic and NMR evidence for flexibility in
oligosaccharyltransferases and its catalytic significance.
J. Nyirenda, S. Matsumoto, T. Saitoh, N. Maita, N. N. Noda, F. Inagaki
and D. Koda.
Structure  2013,  21,  34-41.
Noncanonical recognition and UBL loading of distinct E2s by
autophagy-essential Atg7.
M. Yamaguchi, K. Matoba, R. Sawada, Y. Fujioka, H. Nakatogawa,
H.Yamamoto, Y. Kobashigawa, H. Hoshida, R. Akada, Y. Ohsumi, N. N. Noda
and F. Inagaki.
Nat. Struct. Mol. Biol.  2012,  19,  1250-1256.
Structure-based analyses reveal distinct binding sites for Atg2 andphosphoinositides in Atg18.
Y. Watanabe, T. Kobayashi, H. Yamamoto, H. Hoshida, R. Akada, F. Inagaki,
Y. Ohsumi and N. N. Noda.
J. Biol. Chem.  2012,  287,  31681-31690.
Tertiary structure-function analysis reveals the pathogenic signaling potentiation mechanism of Helicobacter pylori oncogenic effector CagA.
T. Hayashi, M. Senda, H. Morohashi, H. Higashi, M. Horio, Y. Kashiba, L. Nagase,
D. Sasaya, T. Shimizu, N. Venugopalan, H. Kumeta, N. N. Noda, F. Inagaki,
T. Senda and M. Hatakeyama.
Cell Host & Microbe  2012,  12,  20-33.
The autophagy-related protein kinase Atg1 interacts with the ubiquitin-like protein Atg8 via the Atg8-family interacting motif to facilitate autophagosome formation.
H. Nakatogawa, S. Ohbayashi, M. Sakoh-Nakatogawa, S. kakuta, S. W. Suzuki,
H. Kirisako, C. Kondo-Kakuta, N. N. Noda, H. Yamamoto and Y. Ohsumi.
J. Biol. Chem.  2012,  287,  28503-28507.
Differential function of the two Atg4 homologues in the aggrephagy pathway in C. elegans.
F. Wu, Y. Li, F. Wang, N. N. Noda and H. Zhang.
J. Biol. Chem.  2012,  287,  29457-29467.
Atg7と そのAtg8結 合型の立体構造
野田展生
日本結晶学会誌  2012,  54,  166-171.
Structural insights into Atg10-mediated formation of the autophagy-essential Atg12-Atg5 conjugate.
M. Yamaguchi, N. N. Noda, H. Yamamoto, T. Shima, H. Kumeta, Y. Kobashigawa, R. Akada,
Y. Ohsumi and F. Inagaki.
Structure  2012,  20,  1244-1254.
Crystal structure of the C-terminal globular domain of oligosaccharyltransferase from Archaeoglobus fulgidus at 1.75 Å resolution.
S. Matsumoto, M. Igura, J. Nyirenda, M. Matsumoto, S. Yuzawa, N. N. Noda,
F. Inagaki and D. Kohda.
Biochemistry  2012,  51,  4157-4166.
Structure of the novel C-terminal domain of vacuolar protein sorting 30/autophagy-related protein 6 and its specific role in autophagy.            
N. N. Noda, T. Kobayashi, W. Adachi, Y. Fujioka, Y. Ohsumi and F. Inagaki.    
J. Biol. Chem.  2012,  287,  16256-16266. 
Autophagy-related protein 32 acts as autophagic degron and directly initiates mitophagy.         
N. Kondo-Okamoto, N. N. Noda, S. W. Suzuki, H. Nakatogawa, I. Takahashi,
M. Matsunami, A. Hashimoto, F. Inagaki, Y. Ohsumi and K. Okamoto.            
J. Biol. Chem.  2012,  287,  10631-10638. 
Autoinhibition and phosphorylation-induced activation mechanisms of human cancer and autoimmune disease-related E3 protein Cbl-b.
Y. Kobashigawa, A. Tomitaka, H. Kumeta, N. N. Noda, M. Yamaguchi and F. Inagaki.
Proc. Natl. Acad. Sci. USA  2011,  108,  20579-20584.
Structural basis of Atg8 activation by a homodimeric E1, Atg7.
N. N. Noda, K. Satoo, Y. Fujioka, H. Kumeta, K. Ogura, H. Nakatogawa, Y. Ohsumi and
F. Inagaki.
Mol. Cell  2011,  44,  462-475.