生物系研究部構造生物学研究部

研究業績

Novobiocin primarily targets ParE in Neisseria gonorrhoeae.
Y. Ishizaki, C. Hayashi, K. Matoba, and M. Igarashi
J. Antibiot., 2024, https://doi.org/10.1038/s41429-024-00797-1

The UFM1 system: working principles cellular functions, and pathophysiology.
M. Komatsu, T. Inada, and N. N. Noda
Molecular Cell, 2024, 84, https://doi.org/10.1016/j.molcel.2023.11.034

Structural view on autophagosome formation.
N. N. Noda
FEBS Letters, 2024, 598, 84-106, doi:10.1002/1873-3468.14742

Complete set of the Atg8–E1–E2–E3 conjugation machinery forms an interaction web that mediates membrane shaping.
J. Md. Alam, T. Maruyama, D. Noshiro, C. Kakuta, T. Kotani, H. Nakatogawa, and N. N. Noda
Nat. Struct. Mol. Biol. 2023, https://doi.org/10.1038/s41594-023-01132-2

Mechanisms of mitochondrial reorganization.
T. Maruyama, Y. Hama, and N. N. Noda
J. Biochem. 2023, doi: 10.1093/jb/mvad098.

Antiplasmodial activity evaluation of a bestatin-related aminopeptidase inhibitor, phebestin.
N. R. Ariefta, B. Pagmadulam, M. Hatano, N. Ikeda, K. Isshiki, K. Matoba, M. Igarashi, C. Nihei, and Y. Nishikawa
Antimicrob Agents Chemother., 2023, 67: e0160622. doi: 10.1128/aac.01606-22

Protocol for real-time imaging of membrane fission by mitofissin.
T. Maruyama, and N. N. Noda
STAR Protocols, 2023, 4, 102590, https://doi.org/10.1016/j.xpro.2023.102590

Mitofissin: a novel mitochondrial fission protein that facilitates mitophagy.
T. Fukuda, K. Furukawa, T. Maruyama, N. N. Noda, and T. Kanki
Autophagy, 2023. https://doi.org/10.1080/15548627.2023.2237343

The mitochondrial intermembrane space protein mitofissin drives mitochondrial fission required for mitophagy.
T. Fukuda, K. Furukawa, T. Maruyama, S. Yamashita, D. Noshiro, C. Song, Y. Ogasawara, K. Okuyama, J. Md. Alam, M. Hayatsu, T. Saigusa, K. Inoue, K. Ikeda, A. Takai, L. Chen, V. Lahiri, Y. Okada, S. Shibata, K. Murata, D. J. Klionsky, N. N. Noda, and T. Kanki
Molecular Cell, 2023, 83, 2045-2058. https://doi.org/10.1016/j.molcel.2023.04.022

Targeting the ATG5-ATG16L1 protein-protein interaction with a hydrocarbon-stapled peptide derived from ATG16L1 for autophagy inhibition.
J. Cui, Y. Ogasawara, I. Kurata, K. Matoba, Y. Fujioka, N. N. Noda, M. Shibasaki, and T. Watanabe
J. Am. Chem. Soc., 2022. 144. doi: 10.1021/jacs.2c07648

Qualitative differences in disease-associated MEK mutants reveal molecular signatures and aberrant signaling-crosstalk in cancer.
Y. Kubota, Y. Fujioka, A. Patil, Y. Takagi, D. Matsubara, M. Iijima, I. Momose, R. Naka, K. Nakai, N. N. Noda, and M. Takekawa
Nat. Commun., 2022, 13, 4063. doi: 10.1038/s41467-022-31690-w.

Rediscovery of 4-trehalosamine as a biologically stable, mass-producible, and chemically modifiable trehalose analog.
S. Wada, H. Arimura, M. Nagayoshi, R. Sawa, Y. Kubota, K. Matoba, C. Hayashi, Y. Shibuya, M. Hatano, Y. Takehana, S. Ohba, Y. Kobayashi, T. Watanabe, M. Shibasaki, and M. Igarashi
Advanced Biology 2022, 6, 2101309, https://doi.org/10.1002/adbi. 202101309

Update and nomenclature proposal for mammalian lysophospholipid acyltransferases which create membrane phospholipid diversity.
W. J. Valentine, K. Yanagida, H. Kawana, N. Kono, N. N. Noda, J. Aoki and H. Shindou.
J. Biol. Chem. 2022, 298: 101470. doi: 10.1016/j.jbc.2021.101470.

Acetophenone 4-nitrophenylhydroazone inhibits Hepatitis B virus replication by modulating capsid assembly.
M. Yamasaki, N. Matsuda, K. Matoba, S. Kondo, Y. Kanegae, I. Saito and A. Nomoto
Virus Res. 2021, 306, 198565.

液-液相分離と選択的オートファジー
能代大輔、野田展生
実験医学, 2021, 39, 2046-2051.

蛋白質の液-液相分離
野田展生
細胞, 2021, 53, 529-532

Delineating the lapidated Atg8 structure for unveiling its hidden activity in autophagy.
T. Maruyama and N. N. Noda.
Autophagy. 2021, 17, 3271-3272. doi:10.1080/15548627.2021.1961075.

A glutamine sensor that directly activates TORC1.
M. Tanigawa, K. Yamamoto, S. Nagatoishi, K. Nagata, D. Noshiro, N. N. Noda, K. Tsumoto and T. Maeda.
Commun. Biol. 2021, 4, 1093.

Phase-separated protein droplets of amyotrophic lateral sclerosis-associated p62/SQSTM1 mutants show reduced inner fluidity.
M. O. Faruk, Y. Ichimura, S. Kageyama, S. Komatsu-Hirota, A. H. El-Gowily, Y. S. Sou, M. Koike, N. N. Noda and M. Komatsu.
J. Biol. Chem. 2021, 297, 101405.

Membrane perturbation by lipidated Atg8 underlies autophagosome biogenesis.
T. Maruyama, J. M. Alam, T. Fukuda, S. Kageyama, H. Kirisako, Y. Ishii, I. Shimada, Y. Ohsumi, M. Komatsu, T. Kanki, H. Nakatogawa and N. N. Noda.
Nat. Struct. Mol. Biol. 2021, 28, 583-593.

Atg12-interacting motif is crucial for E2-E3 interaction in plant Atg8 system.
K. Matoba and N. N. Noda.
Biol. Pharm. Bull., 2021, 44, 1337-1343. doi: 10.1248/bpb.b21-00439.

Mutagenesis and homology modeling reveal a predicted pocket of lysophosphatidylcholine acyltransferase 2 to catch Acyl-CoA.
F. Hamano, K. Matoba, T. Hashidate-Yoshida, T. Suzuki, K. Miura, D. Hishikawa, T. Harayama, K. Yuki, Y. Kita, N. N. Noda, T. Shimizu and H. Shindou.
FASEB J. 35, 2021, e21501. doi: 10.1096/fj.202002591R

Atg2 and Atg9: Intermembrane and interleaflet lipid transporters driving autophagy.
N. N. Noda.
Biochim. Biophys. Acta Mol. Cell Biol. Lipids. 2021, 1866, 158956. DOI: 10.1016/j.bbalip.2021.158956.

Structural catalog of core Atg proteins opens new era of autophagy research.
K. Matoba and N. N. Noda.
J. Biochem. 2021, 169, 517-525. doi: 10.1093/jb/mvab017.

p62/SQSTM1-droplet serves as a platform for autophagosome formation and anti-oxidative stress response.
S. Kageyama, S. Gudmundsson, Y.-S. Sou, Y. Ichimura, N. Tamura, S. Kazuno, T. Ueno, Y. Miura, D. Noshiro, M. Abe, T. Mizushima, N. Miura, S. Okuda, H. Motohashi, J.-A. Lee, K. Sakimura, T. Ohe, N. N. Noda, S. Waguri, E.-L. Eskelinen and M. Komatsu.
Nat. Commun. 2021, 12, 16.

Biomolecular condensates in autophagy regulation.
Y. Fujioka and N. N. Noda.
Curr. Opin. Cell Biol. 2021, 69, 23-29.

Structural and dynamics analysis of intrinsically disordered proteins by high speed atomic force microscopy.
N. Kodera, D. Noshiro, S. K. Dora, T. Mori, J. Habchi, D. Blocquel, A. Gruet, M. Dosnon, E. Salladini, C. Bignon, Y. Fujioka, T. Oda, N. N. Noda, M. Sato, M. Lotti, M. Mizuguchi, S. Longhi and T. Ando.
Nat. Nanotech., 2021, PMID: 33230318

「相分離で見直すオートファジー」
藤岡優子,野田展生
実験医学, 2021, 39, 10, 172-177.

カレントトピックス「液-液相分離によるオートファゴソームの形成部位の構築」
藤岡優子、野田展生
実験医学, 2020, 38, 1354-1357.

天然変性タンパク質によるオートファジー始動液滴の形成
藤岡優子、野田展生
生物物理, 2020, 60, 171-173.

Liquid-liquid phase separation in autophagy.
N. N. Noda, Z. Wang and H. Zhang.
J. Cell Biol. 2020, 219, e202004062.

Super-assembly of ER-phagy receptor Atg40 induces local ER remodeling at contacts with forming autophagosomal membranes.
K. Mochida, A. Yamasaki, K. Matoba, H. Kirisako, N. N. Noda and H. Nakatogawa.
Nat. Commun., 2020, 11, 3306.

In vitro reconstitution of autophagic processes.
J. M. Alam and N. N. Noda
Biochem. Soci Trans. 2020, 48, 2003-2014.

Atg9 is a lipid scramblase that mediates autophagosomal membrane expansion.
K. Matoba, T. Kotani, A. Tsutsumi, T. Tsuji, T. Mori, D. Noshiro, Y. Sugita N. Nomura, S. Iwata, Y. Ohsumi, T. Fujimoto, H. Nakatogawa, M. Kikkawa and N. N. Noda.
Nat. Struct. Mol. Biol. 2020, 27, 1209.

Secret of Atg9: lipid scramblase activity drives de novo autophagosome biogenesis.
K. Matoba and N. N. Noda.
Cell Death Diff. 2020, 27, 3386-3388.

オートファジーと液-液相分離
藤岡優子
医学のあゆみ, 2020, 272, 763-768.

オートファゴソーム膜の供給③:蛋白質依存的な隔離膜への脂質供給機構
大澤拓生
医学のあゆみ, 2020, 272, 730-736.

選択的オートファジーの構造生物学的基盤
野田展生
医学のあゆみ, 2020, 272, 769-775.

柔らかい構造の可視化①LLPSと膜動態を例に
能代大輔、野田展生
実験医学, 2020, 38, 84-89.

Human ATG2B possesses a lipid transfer activity which is accelerated by negatively charged lipids and WIPI4.
T. Osawa, Y. Ishii and N. N. Noda
Genes Cells., 2020, 25, 65-70.

Phase separation organizes the site of autophagosome formation.
Y. Fujioka, J. M. Alam, D. Noshiro, K. Mouri, T. Ando, Y. Okada, A.I. May, R. L. Knorr, K. Suzuki, Y. Ohsumi and N. N. Noda
Nature., 2020, 578, 301-305.

Liquidity is a critical determinant for selective autophagy of protein condensates.
Yamasaki, J. M. Alam, D. Noshiro, E. Hirata, Y. Fujioka, K. Suzuki, Y. Ohsumi and N. N. Noda
Mol. Cell., 2020, 77, 1163-1175.

Atg2: a novel phospholipid transfer protein that mediates de novo autophagosome biogenesis.
T. Osawa and N. N. Noda
Protein Sci. 2019, 28, 1005-1012

Atg2 mediates direct lipid transfer between membranes for autophagosome formation.
T. Osawa, T. Kotani, T. Kawaoka, E. Hirata, K. Suzuki, H. Nakatogawa, Y. Ohsumi and N. N. Noda
Nat. Struct. Mol. Biol. 2019, 26, 281-288

Evolution from covalent conjugation to non-covalent interaction in the ubiquitin-like ATG12 system.
Y. Pang, H. Yamamoto, H. Sakamoto, M. Oku, J. K. Mutungi, M. H. Sahani, Y. Kurikawa, K. Kita, N. N. Noda, Y. Sakai, H. Jia and N. Mizushima
Nat. Struct. Mol. Biol. 2019, 26, 289-296

A C4N4 diaminopyrimidine fluorophore.
H. Noda, Y. Asada, T. Maruyama, N. Takizawa, N. N. Noda, M. Shibasaki and N. Kumagai
Chem. Eur. J., 2019, 25, 4299-4304.

Structural studies of selective autophagy in yeast.
A. Yamasaki, Y. Watanabe and N. N. Noda
Methods Mol. Biol. 2019, 1880, 77-90

Membrane-binding domains in autophagy.
T. Osawa, J. M. Alam and N. N. Noda
Chem. Phys. Lipids 2019, 218, 1-9

オートファゴソームをつくるための脂質を供給する仕組み
野田展生
FRAGRANCE JOURNAL, 2019, 47, No. 8, 26-29.

Lipidation-independent vacuolar functions of Atg8 rely on its noncanonical interaction with vacuole membrane protein.
X.-M. Liu, A. Yamasaki, X.-M. Du, V. C. Coffman, Y. Ohsumi, H. Nakatogawa, J.-Q. Wu, N. N. Noda and L.-L. Du
eLife 2018, 7, e41237

Endosomal Rab cycles regulate Parkin-mediated mitophagy.
K. Yamano, C. Wang, S. A. Sarraf, C. Münch, R. Kikuchi, N. N. Noda, Y. Hizukuri, M. T. Kanemaki, W. Harper, K. Tanaka, N. Matsuda and R. J. Youle
eLife 2018, 7, e31326

Atg7 activates an autophagy-essential ubiquitin-like protein Atg8 through multi-step recognition.
M. Yamaguchi, K. Satoo, H. Suzuki, Y. Fujioka, Y. Ohsumi, F. Inagaki and N. N. Noda,
J. Mol. Biol. 2018, 430, 249-257

Biophysical characterization of Atg11, a scaffold protein essential for selective autophagy in yeast.
H. Suzuki, H and N. N. Noda
FEBS Open Bio. 2018, 8, 110-116

Autophagy-regulating protease Atg4: structure, function, regulation and inhibition.
T. Maruyama and N. N. Noda
J. Antibiot. 2018, 71, 72-78

Structural biology of the Cvt pathway.
A. Yamasaki and N. N. Noda.
J. Mol. Biol. 2017, 429, 531-542.

Structural biology of the core autophagy machinery.
H. Suzuki, T. Osawa, Y. Fujioka and N. N. Noda.
Curr. Opin. Struct. Biol. 2016, 43, 10-17.

The intrinsically disordered protein Atg13 mediates supramolecular assembly of autophagy initiation complexes.
H. Yamamoto, Y. Fujioka, S. W. Suzuki, D. Noshiro, H. Suzuki, C. Kondo-Kakuta, Y. Kimura, H. Hirano, T. Ando, N. N. Noda and Y. Ohsumi.
Dev. Cell 2016, 38, 86-99.

Structural basis for receptor-mediated selective autophagy of aminopeptidase I aggregates.
A.Yamasaki, Y. Watanabe, W. Adachi, K. Suzuki, K. Matoba, H. Kirisako, H. Kumeta, H. Nakatogawa, Y. Ohsumi, F. Inagaki and N. N. Noda
Cell Rep. 2016, 16, 19-27.

Small differences make a big impact: Structural insights into the differential function of the 2 Atg8 homologs in C. elegans.
F. Wu, P. Wang, Y. Shen, N. N. Noda and H. Zhang.
Autophagy 2016, 12, 606-607.

Structural basis for the regulation of enzymatic activity of Regnase-1 by domain-domain interactions.
M. Yokogawa, T. Tsushima, N. N. Noda, H. Kumeta, Y. Enokizono, K. Yamashita, D. M. Standley, O. Takeuchi, S. Akira and F. Inagaki.
Sci. Rep. 2016, 6, 22324.

Atg101: not just an accessory subunit in the autophagy-initiation complex.
N. N. Noda and N. Mizushima.
Cell Struct. Funct. 2016, 41, 13-20.

高等生物のオートファジー始動に必須な因子Atg101の構造と機能
鈴木浩典、野田展生
日本結晶学会誌 2015, 57, 324-330

Structural basis of the differential function of the two C. elegans Atg8 homologs, LGG-1 and LGG-2, in autophagy.
F. Wu, Y. Watanabe, X. Y. Guo, X. Qi, P. Wang, H. Y. Zhao, Z. Wang, Y. Fujioka, H. Zhang, J. Q. Ren, T. C. Fang, Y. X. Shen, W. Feng, J. J. Hu, N. N. Noda and H. Zhang.
Mol. Cell 2015, 60, 914-929.

The thermotolerant yeast kluyveromyces marxianus is a useful organism for structural and biochemical studies of autophagy.
H. Yamamoto, T. Shima, M. Yamaguchi, Y. Mochizuki, H. Hoshida, S. Kakuta, C. Kondo-Kakuta, N. N. Noda, F. Inagaki, T. Itoh, R. Akada and Y. Ohsumi
J. Biol. Chem. 2015, 290, 29506-29518.

Open and closed HORMAs regulate autophagy initiation.
H. Suzuki, T. Kaizuka, N. Mizushima and N. N. Noda
Autophagy 2015, 11, 2123-2124.

オートファジーの始動を制御する複合体の立体構造
藤岡優子,野田展生
日本結晶学会誌 2015, 57, 191-197

Structure of the Atg101-Atg13 complex reveals essential roles of Atg101 in mammalian autophagy initiation.
H. Suzuki, T. Kaizuka, N. Mizushima and N. N. Noda.
Nat. Struct. Mol. Biol. 2015, 22, 572-580

Atg1 family kinases in autophagy initiation.
N. N. Noda and Y. Fujioka.
Cell. Mol. Life Sci. 2015, 72, 3083-3096

Mechanisms of autophagy.
N.N. Noda and F. Inagaki.
Annu. Rev. Biophys. 2015 44, 101-122

「オートファゴソームの形成にかかわるタンパク質の構造と分子機能」
野田展生,稲垣冬彦
領域融合レビュー 2014, 3, e012.

オートファジーの作動機構
野田展生、稲垣冬彦
実験医学 2014, 32, 1612-1616.

Structural basis of starvation-induced assembly of the autophagy initiation complex.
Y. Fujioka, S. W. Suzuki, H. Yamamoto, C. Kondo-Kakuta, Y. Kimura, H. Hirano, R. Akada, F. Inagaki, Y. Ohsumi and N. N. Noda.
Nat. Struct. Mol. Biol. 2014, 21, 513-521.

Proteomic profiling of autophagosome cargo in Saccharomyces cerevisiae.
K. Suzuki, S. Nakamura, M. Morimoto, K. Fujii, N. N. Noda, F. Inagaki and Y. Ohsumi.
PLOS ONE 2014, 9, e91651.

オートファジーの構造生物学
野田展生
生化学 2013, 85, 762-774.

Atg18 phosphoregulation controls organellar dynamics by modulating its
phosphoinositide-binding activity.
N. Tamura, M. Oku, M. Ito, N. N. Noda, F. Inagaki and Y. Sakai.
J. Cell Biol. 2013, 202, 685-698.

Two-colored FCS screening for LC3-p62 interaction inhibitors.
K. Tsuganezawa, Y. Shinohara, N. Ogawa, S. Tsuboi, N. Okada, M. Mori, S. Yokoyama, N. N. Noda, F. Inagaki, Y. Ohsumi and A. Tanaka.
J. Biolmol. Screen. 2013, 18, 1103-1109.

オートファジーの構造生物学 主要Atg因子の構造の最新像と未解決課題
野田展生
実験医学 2013, 31, 1355-1361.

Atg12-Atg5 conjugate enhances E2 activity of Atg3 by rearranging its
catalytic site.
M. Sakoh-Nakatogawa, K. Matoba, E. Asai, H. Kirisako, J. Ishii, N. N. Noda,
F. Inagaki, H. Nakatogawa and Y. Ohsumi.
Nat. Struct. Mol. Biol. 2013, 20, 433-439.

Structure of the Atg12-Atg5 conjugate reveals a platform for
stimulating Atg8-PE conjugation.
N. N. Noda, Y. Fujioka, T. Hanada, Y. Ohsumi and F. Inagaki.
EMBO Rep. 2013, 14, 206-211.

Crystallographic and NMR evidence for flexibility in oligosaccharyltransferases and its catalytic significance.
J. Nyirenda, S. Matsumoto, T. Saitoh, N. Maita, N. N. Noda, F. Inagaki and D. Koda.
Structure 2013, 21, 34-41.

Noncanonical recognition and UBL loading of distinct E2s by autophagy-essential Atg7.
M. Yamaguchi, K. Matoba, R. Sawada, Y. Fujioka, H. Nakatogawa, H.Yamamoto, Y. Kobashigawa, H. Hoshida, R. Akada, Y. Ohsumi, N. N. Noda and F. Inagaki.
Nat. Struct. Mol. Biol. 2012, 19, 1250-1256.

Structure-based analyses reveal distinct binding sites for Atg2 andphosphoinositides in Atg18.
Y. Watanabe, T. Kobayashi, H. Yamamoto, H. Hoshida, R. Akada, F. Inagaki, Y. Ohsumi and N. N. Noda.
J. Biol. Chem. 2012, 287, 31681-31690.

Tertiary structure-function analysis reveals the pathogenic signaling potentiation mechanism of Helicobacter pylori oncogenic effector CagA.
T. Hayashi, M. Senda, H. Morohashi, H. Higashi, M. Horio, Y. Kashiba, L. Nagase, D. Sasaya, T. Shimizu, N. Venugopalan, H. Kumeta, N. N. Noda, F. Inagaki, T. Senda and M. Hatakeyama.
Cell Host & Microbe 2012, 12, 20-33.

The autophagy-related protein kinase Atg1 interacts with the ubiquitin-like protein Atg8 via the Atg8-family interacting motif to facilitate autophagosome formation.
H. Nakatogawa, S. Ohbayashi, M. Sakoh-Nakatogawa, S. kakuta, S. W. Suzuki, H. Kirisako, C. Kondo-Kakuta, N. N. Noda, H. Yamamoto and Y. Ohsumi.
J. Biol. Chem. 2012, 287, 28503-28507.

Differential function of the two Atg4 homologues in the aggrephagy pathway in C. elegans.
F. Wu, Y. Li, F. Wang, N. N. Noda and H. Zhang.
J. Biol. Chem. 2012, 287, 29457-29467.

Atg7と そのAtg8結 合型の立体構造
野田展生
日本結晶学会誌 2012, 54, 166-171.

Structural insights into Atg10-mediated formation of the autophagy-essential Atg12-Atg5 conjugate.
M. Yamaguchi, N. N. Noda, H. Yamamoto, T. Shima, H. Kumeta, Y. Kobashigawa, R. Akada, Y. Ohsumi and F. Inagaki.
Structure 2012, 20, 1244-1254.

Crystal structure of the C-terminal globular domain of oligosaccharyltransferase from Archaeoglobus fulgidus at 1.75 Å resolution.
S. Matsumoto, M. Igura, J. Nyirenda, M. Matsumoto, S. Yuzawa, N. N. Noda, F. Inagaki and D. Kohda.
Biochemistry 2012, 51, 4157-4166.

Structure of the novel C-terminal domain of vacuolar protein sorting 30/autophagy-related protein 6 and its specific role in autophagy.
N. N. Noda, T. Kobayashi, W. Adachi, Y. Fujioka, Y. Ohsumi and F. Inagaki.
J. Biol. Chem. 2012, 287, 16256-16266.

Autophagy-related protein 32 acts as autophagic degron and directly initiates mitophagy.
N. Kondo-Okamoto, N. N. Noda, S. W. Suzuki, H. Nakatogawa, I. Takahashi, M. Matsunami, A. Hashimoto, F. Inagaki, Y. Ohsumi and K. Okamoto.
J. Biol. Chem. 2012, 287, 10631-10638.

Autoinhibition and phosphorylation-induced activation mechanisms of human cancer and autoimmune disease-related E3 protein Cbl-b.
Y. Kobashigawa, A. Tomitaka, H. Kumeta, N. N. Noda, M. Yamaguchi and F. Inagaki.
Proc. Natl. Acad. Sci. USA 2011, 108, 20579-20584.

Structural basis of Atg8 activation by a homodimeric E1, Atg7.
N. N. Noda, K. Satoo, Y. Fujioka, H. Kumeta, K. Ogura, H. Nakatogawa, Y. Ohsumi and F. Inagaki.
Mol. Cell 2011, 44, 462-475.