生物系研究部第1生物活性研究部
研究業績
A cancer-specific anti-podoplanin monoclonal antibody, PMab-117-mG2a exerts antitumor activities in human tumor xenograft models.
T. Tanaka, H. Suzuki ,T. Ohishi, M. K. Kaneko, and Y. Kato
Cells, 2024, 13, 1833, https://doi.org/10.3390/cells13221833
PP2A negatively regulates NK cell T-bet expression and anti-tumor effector function.
Y. Shinzawa, D. Hara, Y. Shinguryo, S. Yokoyama, M. Kawada, and Y. Hayakawa
Int Immunol. 2024, doi: 10.1093/intimm/dxae057.
Hepatocyte Period 1 dictates oxidative substrate selection independent of the core circadian clock.
J. Sun, Y. Zhang, J. Adams, C. Higgins, S. Kelly, H. Zhang, K. Cho, U. Johnson, B. Swarts, S. Wada, G. Patti, L. Shriver, B. Finck, E. Herzog, and B. DeBosch
Cell Reports, 2024, https://www.cell.com/cell-reports/fulltext/S2211-1247(24)01216-6
Enhanced anticancer activity of 7MeERT over Ertredin: a comparative study on cancer cell proliferation and NDUFA12 binding.
S. Atsumi, C. Nosaka, T. Onodera, H. Adachi, T. Watanabe, M. Kawada, M. Shibuya, S. I. Park, and H. J. Kwon
Biomolecules, 2024, 14, 1197. https://doi.org/10.3390/biom14091197
Antitumor activities of anti‑CD44 monoclonal antibodies in mouse xenograft models of esophageal cancer.
K. Ishikawa, H. Suzuki, T. Ohishi, T. Nakamura, M. Yanaka, G. Li, T. Tanaka, A. Ohkoshi, M. Kawada, M. K. Kaneko, Y. Katori, and Y. Kato
Oncol Rep., 2024, 52, 147. doi: 10.3892/or.2024.8806.
Hepatocyte MMP14 mediates liver and inter-organ inflammatory responses to diet-induced liver injury.
S. Kelly, C. Higgins, J. Sun, J. Adams, Y. Zhang, S. Ballentine, Y. Miao, X. Cui, M. Milewska, I. Wandzik, J. Yoshino, B. Swarts, S. Wada, and B. DeBosch
PNAS Nexus, 2024, 3, 357, https://doi.org/10.1093/pnasnexus/pgae357
Anti-CD44 variant 10 monoclonal antibody exerts antitumor activity in mouse xenograft models of oral squamous cell carcinomas.
K. Ishikawa, H. Suzuki, T. Ohishi, G. Li, T. Tanaka, M. Kawada, A. Ohkoshi, M. K. Kaneko, and Y. Kato
Int. J. Mol. Sci., 2024, 25, 9190, https://doi.org/10.3390/ijms25179190
Anti-HER2 cancer-specific mAb, H2Mab-250-hG1, possesses higher complement-dependent cytotoxicity than trastuzumab.
H. Suzuki, T. Ohishi, T. Tanaka, M. K. Kaneko, and Y. Kato
Int. J. Mol. Sci., 2024, 25, 8386, https://doi.org/10.3390/ijms25158386
NDUFA12 as a functional target of the anticancer compound Ertredin in human hepatoma cells as revealed by label-free chemical proteomics.
S. I. Park, S. M. Cho, S. Atsumi, M. Kawada, M. Shibuya, J. Y. Lee, J. Y. Kim, and H. J. Kwon
J. Proteome Res., 2024, 23, 130-141, doi: org/10.1021/acs.jproteome.3c00471
Locally misfolded HER2 expressed on cancer cells is a promising target for development of cancer-specific antibodies.
T. Arimori , E. Mihara, H. Suzuki, T. Ohishi, T. Tanaka, M. K. Kaneko, J. Takagi, and Y. Kato
Structure, 2024, https://doi.org/10.1016/j.str.2024.02.007
A cancer-specific monoclonal antibody against HER2 exerts antitumor activities in human breast cancer xenograft models.
M. K. Kaneko., H. Suzuki, T. Ohishi, T. Nakamura, T. Tanaka, and Y. Kato
Int. J. Mol. Sci., 2024, 25, 1941. doi: 10.3390/ijms25031941
Pancreatic stromal cell-derived oncostatin M confers drug resistance to a multi-tyrosine kinase Inhibitor in pancreatic cancer cells.
D. Tatsuda, J. Yoshida, T. Ohishi, and M. Kawada
Anticancer Res. 2024, 43, 2477-2489. doi:10.21873/anticanres.16415
A cancer-specific monoclonal antibody against podocalyxin exerted antitumor activities in pancreatic cancer xenografts.
H. Suzuki, T. Ohishi, T. Tanaka, M. K. Kaneko, and Y. Kato
Int J. Mol. Sci. 2024, 25, 161. https://doi.org/10.3390/ijms25010161
Two new adenopeptins B and C inhibit sphere formation of pancreatic cancer cells.
D. Tatsuda, M. Amemiya, C. Nosaka, R. Sawa, H. Muramatsu, M. Igarashi, J. Yoshida, T. Ohishi, and M. Kawada
https://doi.org/10.1038/s41429-023-00679-y
Antitumor activities against breast cancers by an afucosylated anti-HER2 monoclonal antibody H2Mab-77-mG2a-f.
T. Tanaka, H. Suzuki, T. Ohishi, M. K. Kaneko, and Y. Kato
Cancer Science, 2023, 00:1-12. DOI: 10.1111/cas.16008
A humanized and defucosylated antibody against podoplanin(humLpMab-23-f) exerts antitumor activities in human lung cancer and glioblastoma xenograft models.
H. Suzuki, T. Ohishi, M. K. Kaneko, and Y. Kato
Cancers, 2023, 15, 5080. https://doi.org/10.3390/cancers15205080
Deoxynortryptoquivaline: A unique antiprostate cancer agent.
Y. Yamazaki, M. Kawada, and I. Momose
Oncology Research, 2023, 31, 845-853, Doi: 10.32604/or.2023.030266
Identification of a dihydroorotate dehydrogenase inhibitor that inhibits cancer cell growth by proteomic profiling.
M. Kawatani, H. Aono, S. Hiranuma, T. Shimizu, M. Muroi, T. Nogawa, T. Ohishi, S. I. Ohba, M. Kawada, K. Yamazaki, S. Dan, N. Dohmae, and H. Osada
Oncology Research, 2023, 31, 833-844, Doi: 10.32604/or.2023.030241
Defucosylated monoclonal antibody (H2Mab-139-mG2a-f) exerted antitumor activities in mouse xenograft models of breast cancers against human epidermal growth factor receptor 2.
H. Suzuki, T. Ohishi, R. Nanamiya, M. Kawada, M. K. Kaneko, and Y. Kato
Curr. Issues Mol. Biol. 2023, 45, 7734-7748. htps://doi.org/10.3390/cimb45100488
Anti-inflammatory effects of dietary polyphenols through inhibitory activity against metalloproteinases.
T. Suzuki, T. Ohishi, H. Tanabe, N. Miyoshi, and Y. Nakamura
Molecules 2023, 28, 5426. https://doi.org/10.3390/molecules28145426
Pancreatic stromal cell-derived oncostatin M confers drug resistance to a multi-tyrosine kinase inhibitor in pancreatic cancer cells.
D. Tatsuda, J. Yoshida, T. Ohishi and M. Kawada
Anticancer Res. 2023, 43, 2477-2489. doi:10.21873/anticanres.16415
がんエネルギー代謝を標的とした創薬
吉田潤次郎、大石智一、川田 学
腫瘍内科 2023, 31, 102-108
Current targeted therapy for metastatic colorectal cancer.
T. Ohishi, M. K. Kaneko, Y. Yoshida, A. Takashima, Y. Kato, and M. Kawada
Int. J. Mol. Sci., 2023, 24, 1702. https://doi.org/10.3390/ijms24021702
A specific G9a inhibitor unveils BGLT3 lncRNA as a universal mediator of chemically induced fetal globin gene expression.
S. Takase, T. Hiroyama, F. Shirai, Y. Maemoto, A. Nakata, M. Arata, S. Matsuoka, T. Sonoda, H. Niwa, S. Sato, T. Umehara, M. Shirouzu, Y. Nishigaya, T. Sumiya, N. Hashimoto, R. Namie, M. Usui, T. Ohishi, S. Ohba, M. Kawada, Y. Hayashi, H. Harada, T. Yamaguchi, Y. Shinkai, Y. Nakamura, M. Yoshida, and A. Ito
Nature Communications 2023. https://doi.org/10.1038/s41467-022-35404-0
Effects of epigallocatechin-3-gallate on matrix metalloproteinases in terms of its anticancer activity.
H. Tanabe, T. Suzuki, T. Ohishi, M. Isemura, Y. Nakamura, and K. Unno
Molecules, 2023, 28, 525. https://doi.org/10.3390/molecules28020525
Health effects of soy isoflavones and green tea catechins on cancer and cardiovascular diseases based on urinary biomarker levels.
T. Ohishi, N. Miyoshi, M. Mori, M. Sagara, and Y. Yamori
Molecules, 2022, 27, 8899. https:doi.org/10.3390/molecules27248899
Contribution of non-coding RNAs to anticancer effects of dietary polyphenols: chlorogenic acid, curcumin, epigallocatechin-3-gallate, genistein, quercetin and resveratrol.
S. Hayakawa, T. Ohishi, Y. Oishi, M. Isemura, and N. Miyoshi
Antioxidants, 2022, 11, 2352. https://doi.org/10.3390/antiox11122352
A defucosylated anti-EpCAM monoclonal antibody (EpMab-37-mG2a-f) exerts antitumor activity in xenograft model.
T. Asano, T. Tanaka, H. Suzuki, G. Li, T. Ohishi, M. Kawada, T. Yoshikawa, M. K. Kaneko, and Y. Kato
Antibodies, 2022, 11, 74. https://doi.org/10.3390/antib11040074
Defucosylated mouse-dog chimeric anti-HER2 monoclonal antibody (H77Bf) exerts antitumor activities in mouse xenograft models of canine osteosarcoma.
R. Nanamiya, T. Ohishi, H. Suzuki, T. Mizuno, T. Yoshikawa, T. Asano, T. Tanaka, M. K. Kaneko, and Y. Kato
Monoclon. Antib. Immunodiagn. Immunother., 2022. doi: 10.1089/mab.2022.0022
Antitumor activity of an anti-EGFR/HER2 bispecific antibody in a mouse xenograft model of canine osteosarcoma.
N. Tateyama, H. Suzuki, T. Ohishi, T. Asano, T. Tanaka, T. Mizuno, T. Yoshikawa, M. Kawada, M. K. Kaneko, and Y. Kato
Pharmaceutics, 14, 2494, https://doi.org/10.3390/pharmaceutics14112494
Antitumor activities in mouse xenograft models of canine fibroblastic tumor by defucosylated mouse-dog chimeric anti-HER2 monoclonal antibody (H77Bf).
H. Suzuki, T. Asano, T. Ohishi, T. Yoshikawa, H. Suzuki, T. Mizuno, T. Tanaka, M. Kawada, M. K. Kaneko, and Y. Kato
Monoclon. Antib. Immunodiagn. Immunother., 2022. doi: 10.1089/mab.2022.0023
Anti‑lung cancer properties of cyanobacterial bioactive compounds.
M. S. Baig, S. Rajpoot, T. Ohishi, R. Savai, S. Seidel, N. A. Kamennaya, E. E. Bezsonov, A. N. Orekhov, P. Mahajan, K. Solanki, and U. Saqib
Archives of Microbiology, 2022, 204, 606. https://doi.org/10.1007/s00203-022-03194-0
Structural analysis of spike proteins from SARS-CoV-2 variants of concern highlighting their functional alterations.
K. Solanki, S. Rajpoot, A. Kumar, K. Y J Zhang, T. Ohishi, N. Hirani, K. Wadhonkar, P. Patidar, Q. Pan, and M. S Baig
Future Virol. 2022, Jul; 10.2217/fvl-2022-0003. doi: 10.2217/fvl-2022-0003.
Short peptides derived from hGAPDH exhibit anti-cancer activity.
J. Yoshida, K. Takayama, and M. Kawada
Bioorganic & Medicinal Chemistry, 2022, 71, 116953. https://doi.org/10.1016/j.bmc.2022.116953
Defucosylated mouse‑dog chimeric anti‑HER2 monoclonal antibody exerts antitumor activities in mouse xenograft models of canine tumors.
H. Suzuki, T. Ohishi, T. Asano, T. Tanaka, M. Saito, T. Mizuno, T. Yoshikawa, M. Kawada, M. K. Kaneko, and Y. Kato
Oncol. Rep., 2022, 48, 154. doi: 10.3892/or.2022.8366
Epigallocatechin gallate (EGCG) attenuates severe acute respiratory coronavirus disease 2 (SARS-CoV-2) infection by blocking the interaction of SARS-CoV-2 spike protein receptor-binding domain to human angiotensin-converting enzyme 2.
T. Ohishi, T. Hishiki, M. S. Baig, S. Rajpoot, U. Saquib, T. Takasaki, and Y. Hara
Plos One. 2022, 17, e0271112. doi: 10.1371/journal.pone.0271112. eCollection 2022
Anti-cancer effects of dietary polyphenols via ROS-mediated pathway with their modulation of microRNAs.
Y. Yoshioka, T. Ohishi, Y. Nakamura, R. Fukutomi and N. Miyoshi
Molecules 2022, 27, 3816. https://doi.org/10.3390/molecules27123816
Defucosylated anti-EGFR monoclonal antibody exerted antitumor activities in mouse xenograft models of canine mammary gland tumor.
T. Tanaka, T, Ohishi, M. Saito, H. Suzuki, M. K. Kaneko, M. Kawada, and Y. Kato
Monoclonal Antibodies in Immunodiagnosis and Immunotherapy, 2022, 41, 142-149. doi: 10. 1089/mab. 2022. 0009
A defucosylated mouse anti-CD10 monoclonal antibody (31-mG2a-f) exerts antitumor activity in a mouse xenograft model of renal cell cancers.
H. Kawabata, T. Ohishi, H. Suzuki, T. Asano, M. Kawada, H. Suzuki, M. K. Kaneko and Y. Kato
Monoclon. Antib. Immunodiagn. Immunother. 2022. doi. org/10. 1089/mab. 2021. 0049. PMID: 35483055
A defucosylated mouse anti-CD10 monoclonal antibody (31-mG2a-f) exerts antitumor activity in a mouse xenograft model of CD10-overexpressed tumors.
H. Kawabata, H. Suzuki, T. Ohishi, M. kawada, M. K. Kaneko and Y. Kato
Monoclon Antib Immunodiagn Immunother. 2022. 41. 59-66. doi: 10. 1089/mab. 2021. 0048. PMID: 35471051
Antitumor activities in mouse xenograft models of canine mammary gland tumor by defucosylated mouse-dog chimeric anti-EGFR antibody (E134Bf).
G. Li, H. Suzuki, J. Takei, T. Asano, M. Sano, T. Tanaka, H. Harada, T. Mizuno, T. Ohishi, M. Kawada, M. K. Kaneko and Y. Kato
Monoclon Antib Immunodiagn Immunother. 2022, 41, 53-58. doi: 10. 1089/mab. 2021. 0040. PMID: 35471048
Antitumor activities in mouse xenograft models of canine fibroblastic tumor by defucosylated anti-EGFR monoclonal antibody.
N. Goto, H. Suzuki, T. Ohishi, A. Harakawa, G. Li, M. Saito, J. Takei, T. Tanaka, T. Asano, M. Sano, M. Kawada, M. Kaneko, and Y. Kato
Monoclonal Antibodies in Immunodiagnosis and Immunotherapy, 2022, 42, doi: 10.1089/mab.2021.0059
Rediscovery of 4-trehalosamine as a biologically stable, mass-producible, and chemically modifiable trehalose analog.
S. Wada, H. Arimura, M. Nagayoshi, R. Sawa, Y. Kubota, K. Matoba, C. Hayashi, Y. Shibuya, M. Hatano, Y. Takehana, S. Ohba, Y. Kobayashi, T. Watanabe, M. Shibasaki, and M. Igarashi
Advanced Biology 2022, 6, 2101309, https://doi.org/10.1002/adbi. 202101309
TrMab-6 exerts antitumor activity in mouse xenograft models of breast cancers.
T. Tanaka, T. Ohishi, M. Saito, M. Kawada, M. K. Kaneko and Y. Kato
Monoclon Antib Immunodiagn Immunother. 2022, 41, 32-38. doi:10.1089/mab.2021.0056. PMID: 35225665
Defucosylated anti-EGFR monoclonal antibody (134-mG2a-f) exerts antitumor activities in mouse xenograft models of canine osteosarcoma.
R. Nanamiya, J. Takei, T. Ohishi, T. Asano, T. Tanaka, M. Sano, T. Nakamura, M. Yanaka, S. Handa, Y. Komatsu, H. Hosono, N. Tateyama, Y. Harigae, M. Saito, H. Suzuki, M. Kawada, M. K. Kaneko and Y. Kato
Monoclon Antib Immunodiagn Immunother. 2022, 41, 1-7. doi: 10.1089/mab.2021.0036. PMID: 35225663
Isolation of new derivatives of the 20-membered macrodiolide bispolide from Kitasatospora sp. MG372-hF19.
Y. Kohda, S. Sakamoto, M. Umekita, T. Kimura, Y. Kubota, R. Arisaka, Y. Shibuya, H. Muramatsu, R. Sawa, S. Dan, M. Kawada, and M. Igarashi.
J. Antibiot., 2022, 75, 77-85. doi.org/10.1038/s41429-021-00492-5
The potent protein phosphatase 2A inhibitors Aminocytostatins: new derivatives of cytostatin.
S. Tohyama, M. Kawada, H. Muramatsu, M. Hatano, H. Inoue, K. Matoba, R. Sawa, and M. Igarashi
J. Antibiot. 74, 743-751, 2021. doi: 10.1038/s41429-021-00455-w.
Androprostamine A: a unique antiprostate cancer agent.
Y. Yamazaki, H. Abe, C. Sakashita, SI. Ohba, T. Watanabe, I. Momose and M. Kawada
J. Antibiot. 2021, 74, 717-725
An Anti-HER2 monoclonal antibody H 2 mab-41 exerts antitumor activities in mouse xenograft model using dog HER2-overexpressed cells.
N. Tateyama, T. Asano, T. Ohishi, J. Takei, H. Hosono, R. Nanamiya, T. Tanaka , M. Sano, M. Saito, M. Kawada, M. K. Kaneko and Y. Kato
Monoclon Antib Immunodiagn Immunother, 2021,40,184-190
Defucosylated anti-epidermal growth factor receptor monoclonal antibody 134-mG 2a-f exerts antitumor activities in mouse xenograft models of dog epidermal growth factor receptor-overexpressed cells.
N. Tateyama, R. Nanamiya, T. Ohishi, J. Takei, T. Nakamura, M. Yanaka, H. Hosono, M. Saito, T. Asano, T. Tanaka, M. Sano, M. Kawada, M. K. Kaneko and Y. Kato
Monoclon Antib Immunodiagn Immunother, 2021, 40, 177-183.
金化合物Auranofinのがん微小環境特異的抗がん活性
百瀬 功、小野寺威文、川田 学
YAKUGAKU ZASSHI, 2021, 141, 315-321.
Defucosylated mouse-dog chimeric anti-EGFR antibody exerts antitumor activities in mouse xenograft models of canine tumors.
G. Li, T. Ohishi, M. K. Kaneko, J. Takei, T. Mizuno, M. Kawada, M. Saito, H. Suzuki and Y. Kato
Cells, 2021, 10, 3599.
Phenotypic screening system using three-dimensional (3D) culture models for natural product screening.
H. Suenaga, N. Kagaya, M. Kawada, D. Tatsuda, T. Sato and K. Shin-Ya.
J. Antibiot. 2021, 74, 660-666.
Mitochondrial complex I inhibitors suppress tumor growth through concomitant acidification of the intra- and extracellular environment
J. Yoshida, T. Ohishi, H. Abe, S. Ohba, H. Inoue, I. Usami, M. Amemiya, R. Oriez, C. Sakashita, S. Dan, M. Sugawara, T. Kawaguchi, J. Ueno, Y. Asano, A. Ikeda, M. Takamatsu, G. Amori, Y. Kondoh, K. Honda, H. Osada, T. Noda, T. Watanabe, T. Shimizu, M. Shibasaki, M. Kawada.
iScience, 2021, 24, 103497. doi.org/10.1016/ j.isci.2021.103497.
Identification of dihydroorotate dehydrogenase inhibitors-indoluidins-that inhibit cancer cell growth.
M. Kawatani, H. Aono, T. Shimizu, S. Ohkura, S. Hiranuma, M. Muroi, N. Ogawa, T. Ohishi, SI. Ohba, M. Kawada, K. Yamazaki, S. Dan and H. Osada
ACS Chem. Biol. 2021, 16, 2570-2580, doi: 10.1021/acschembio.1c00625
Structure-activity relationships of natural quinone vegfrecine analogs with potent activity against VEGFR-1 and -2 tyrosine kinases.
H. Adachi, C. Nosaka, S. Atsumi, K. Nakae, Y. Umezawa, R. Sawa, Y. Kubota, C. Nakane, M. Shibuya and Y. Nishimura
J. Antibiot., 2021, 74, 734-742.
Quinofuracins F - I, new quinofuracin derivatives produced by Staphylotrichum boninense PF1444.
D. Tatsuda, M. Amemiya, R. Sawa, I. Momose and M. Kawada
J. Antibiot., 2021, 74, 758-762.
An anti-TROP2 monoclonal antibody TrMab-6 exerts antitumor activity in breast cancer mouse xenograft models
T. Tanaka, T. Ohishi, T. Asano, J. Takei, R. Nanamiya , H. Hosono, M. Sano, H. Harada, M. Kawada, M. K. Kaneko and Y. Kato
Oncol Rep., 2021, 46(1), 132, doi: 10.3892/or.2021.8083.
Anti-HER3 monoclonal antibody exerts antitumor activity in a mouse model of colorectal adenocarcinoma
T. Asano, T. Ohishi, J. Takei, T. Nakamura, R. Nanamiya, H. Hosono, T.Tanaka, M. Sano, H. Harada, M. Kawada, M. K. Kaneko and Y. Kato
Oncol Rep., 2021, 46(2), 173, doi: 10.3892/or.2021.8124.
An anti‑TROP2 monoclonal antibody TrMab‑6 exerts antitumor activity in breast cancer mouse xenograft models.
T. Tanaka, T. Ohishi, T. Asano, J. Takei, R. Nanamiya , H. Hosono, M. Sano, H. Harada, M. Kawada, M. K. Kaneko and Y. Kato
Oncol Rep., 2021, 46, 132.
「がんと間質の相互作用を標的とした薬剤開発の現状」
大石智一,吉田潤次郎,川田 学
実験医学増刊, 2021, 39, 12, 147-153.
The therapeutic potential of mitochondrial toxins.
M. Kawada, M. Amemiya, J. Yoshida and T. Ohishi
J. Antibiot., 2021, 74, 696-705.
Identification of a small-molecule glucose transporter inhibitor, glutipyran, that inhibits cancer cell growth.
M. Kawatani, H. Aono, S. Hiranuma, T. Shimizu, M. Muroi, N. Ogawa, T. Ohishi, S.-I. Ohba, M. Kawada, T. Nogawa, A. Okano, D. Hashizume and H. Osada
ACS Chem. Biol., 2021, 16, 1576-1586. doi: 10.1021/acschembio.1c00480.
Tumor-derived exosomes in the regulation of macrophage polarization.
MS. Baig, A. Roy, S. Rajpoot, D. Liu, R. Savai, S. Banerjee, M. Kawada, SM. Faisal, R. Saluja, U. Saqib, T. Ohishi and KK. Wary.
Inflamm Res. 2020, 69, 435-451
Antibody-drug conjugates using mouse-canine chimeric anti-dog podoplanin antibody exerts antitumor activity in a mouse xenograft model.
Y. Kato, Y. Ito, T. Ohishi, M. Kawada, T. Nakamura, Y. Sayama, M. Sano, T. Asano, M. Yanaka, S. Okamoto, S. Handa, Y. Komatsu, J. Takei and MK. Kaneko.
Monoclon Antib Immunodiagn Immunother., 2020, 39, 37-44
H2Mab-19 anti-human epidermal growth factor receptor 2 monoclonal antibody therapy exerts antitumor activity in pancreatic cancer xenograft models.
Y. Kato, T. Ohishi, M. Sano, T. Asano, Y. Sayama, Y. Takei, M. Kawada and MK. Kaneko
Monoclon Antib Immunodiagn Immunother., 2020, 39, 61-65, doi: 10.1089/mab.2020.0011.
An anti-human epidermal growth factor receptor 2 monoclonal antibody H2Mab-19 exerts antitumor activity in mouse colon cancer xenografts.
Y. Kato, T. Ohishi, J. Takai, T. Nakamura, M. Sano, T. Asano, Y. Sayama, H. Hosono, M. Kawada and MK. Kaneko
Monoclon Antib Immunodiagn Immunother., 2020, 39, 123-128, doi: 10.1089/mab.2020.0009
An antihuman epidermal growth factor receptor 2 monoclonal antibody (HMab-19) exerts antitumor activity in glioblastoma xenograft models.
Y. Kato, T. Ohishi, J. Takei, T. Nakamura, M. Kawada and MK. Kaneko
Monoclon. Antibodies Immunodiagn. Immunother., 2020, 39(4), 135-139, doi: 10.1089/mab.2020.0013
H 2 Mab-19, an anti-human epidermal growth factor receptor 2 monoclonal antibody exerts antitumor activity in mouse oral cancer xenografts.
J. Takei, MK. Kaneko, T. Ohishi, M. Kawada, H. Harada and Y. Kato
Exp. Ther. Med., 2020, 20(2), 846-853.
Interferon-induced transmembrane protein 1 (IFITM1) promotes distant metastasis of small cell lung cancer.
S. Sakamoto, H. Inoue, Y. Kohda, S. Ohba, T. Mizutani, and M. Kawada
Int. J. Mol. Sci., 2020, 21, 4934.
Anti-metastatic activity of an anti-EGFR monoclonal antibody against metastatic colorectal cancer with KRAS p.G13D mutation.
T. Ohishi, Y. Kato, MK. Kaneko, SI. Ohba, H. Inoue, A. Harakawa and M. Kawada
Int. J. Mol. Sci., 2020, 21(17):E6037.
Anti-EGFR monoclonal antibody 134-mG2a exerts antitumor effects in mouse xenograft models of oral squamous cell carcinoma.
H. Hosono, J. Takei, T. Ohishi, M. Sano, T. Asano, Y. Sayama, T. Nakamura, M. Yanaka, M. Kawada, H. Harada, MK. Kaneko and Y. Kato
Int. J. Mol. Med., 2020, 46(4), 1443-1452.
Anti‑EpCAM monoclonal antibody exerts antitumor activity against oral squamous cell carcinomas.
M. K. Kaneko, T. Ohishi, J. Takei, M. Sano, T. Nakamura, H. Hosono, M. Yanaka, T. Asano, Y. Sayama, H. Harada, M. Kawada and Y. Kato
Oncol Rep., 2020, 44(6), 2517-2526.
A defucosylated anti-PD-L1 monoclonal antibody 13-mG 2a-f exerts antitumor effects in mouse xenograft models of oral squamous cell carcinoma.
J. Takei, T. Ohishi, M. K. Kaneko, H. Harada, M. Kawada and Y. Kato
Biochem Biophys Rep., 2020, 24. 100801, doi: 10.1016/j.bbrep.2020.100801.
Human pancreatic cancer cells under nutrient deprivation are vulnerable to redox system inhibition.
T. Onodera, I. Momose, H. Adachi, Y. Yamazaki, R. Sawa, SI. Ohba and M. Kawada
J. Biol. Chem., 2020, 295, 16678-16690.
A defucosylated anti‑CD44 monoclonal antibody 5‑mG2a‑f exerts antitumor effects in mouse xenograft models of oral squamous cell carcinoma.
J. Takei, M. K. Kaneko, T. Ohishi, H. Hosono, T. Nakamura, M. Yanaka, M. Sano, T. Asano, Y. Sayama, M. Kawada, H. Harada and Y. Kato
Oncol. Rep., 2020, 44(5), 1949-1960.
Anti-cancer effects of green tea epigallocatchin-3-gallate and coffee chlorogenic acid.
S. Hayakawa, T. Ohishi, N. Miyoshi, Y. Oishi, Y. Nakamura and M. Isemura
Molecules, 2020, 25, 4553. doi:10.3390/molecules25194553.
Development of core-fucose-deficient humanized and chimeric anti-human podoplanin antibodies.
M. K. Kaneko, T. Ohishi, T. Nakamura, H. Inoue, J. Takei, M. Sano, T. Asano, Y. Sayama, H. Hosono, H. Suzuki, M. Kawada and Y. Kato
Monoclon. Antibodies Immunodiagn. Immunother., 2020, 39(5), 167-174.
A cancer-specific anti-podocalyxin monoclonal antibody (60-mG 2a-f) exerts antitumor effects in mouse xenograft models of pancreatic carcinoma
M. K. Kaneko, T. Ohishi, M. Kawada and Y. Kato
Biochem. Biophys. Rep., 2020, 24, 100826.
The anti-epithelial cell adhesion molecule (EpCAM) monoclonal antibody EpMab-16 exerts antitumor activity in a mouse model of colorectal adenocarcinoma.
H. Hosono, T. Ohishi, J. Takei, T. Asano, Y. Sayama, M. Kawada, M. K. Kaneko, Y. Kato
Oncol Lett., 2020, 20, 383.
Identification of a small compound targeting PKM2-regulated signaling using 2D gel electrophoresis-based proteome-wide CETSA
I. Nagasawa, M. Muroi, M. Kawatani, T. Ohishi, S. Ohba, M. Kawada and H. Osada
Cell Chem. Biol., 2020, 27, 186-196. https://doi.org/10.1016/j.chembiol.2019.11.010
A novel anti-EGFR monoclonal antibody (EMab-17) exerts antitumor activity against oral squamous cell carcinomas via antibody-dependent cellular cytotoxicity and complement-dependent cytotoxicity.
J. Takei, MK. Kaneko, T. Ohishi, M. Kawada, H. Harada and Y. Kato
Oncol. Lett., 2020, 19, 2809-2816.
Inhibition of mitochondria ATP synthase suppresses prostate cancer growth through reduced insulin-like growth factor-1 secretion by prostate stromal cells.
T. Ohishi, H. Abe, C. Sakashita, U. Saqib, MS. Baig, SI. Ohba, H. Inoue, T. Watanabe, M. Shibasaki and M. Kawada.
Int J Cancer. 2020 Mar 6. doi: 10.1002/ijc.32959.
A new indole glycoside from Kitasatospora sp. MG372-hF19 carrying a 6-deoxy-α-L-talopyranose moiety.
Y. Kohda, S. Sakamoto, Y. Otsuka, R. Sawa, Y. Kubota, M. Igarashi, H. Muramatsu, M. Iijima and M. Kawada
J. Antibiot., 2020, 73, 167-170. doi.org/10.1038/s41429-019-0258-9.
The mouse–canine chimeric anti-dog podoplanin antibody P38B exerts antitumor activity in mouse xenograft models.
Y. Kato, T. Ohishi, M. Kawada, N. Maekawa, S. Konnai, S. Itai, S. Yamada and MK. Kaneko
Biochem Biophys Rep. 2019, 17, 23-26
Potential anticancer activity of auranofin.
T. Onodera, I. Momose and M. Kawada
Chem. Pharm. Bull., 2019, 67, 186-191.
Flupyranochromene, a novel inhibitor of influenza virus cap-dependent endonuclease, from Penicillium sp. f28743
M. Yamasaki, M. Igarash, R. Sawa, C. Nosaka, M. Umekita, M. Hatano, T. Kimura, K. Iijima, N. Takizawa, T. Kato, K. Mizumoto, and A. Nomoto
J. Antibiot. 2019, 72, 125-133
Leucinostatin Y: A peptaibiotic produced by the entomoparasitic fungus Purpureocillium lilacinum 40-H-28.
I. Momose, T. Onodera, H. Doi, H. Adachi, M. Iijima, Y. Yamazaki, R. Sawa, Y. Kubota, M. Igarashi and M. Kawada
J. Nat. Prod., 2019, 82, 1120-1127.
Anti-CD133 monoclonal antibody CMab-43 exerts antitumor activity in a mouse xenograft model of colon cancer
Y. Kato, T. Ohishi, S. Yamada, S. Itai, Y. Furusawa, M. Sano, T. Nakamura, M. Kawada and MK. Kaneko
Monoclon Antib Immunodiagn Immunother., 2019, 38, 75-78.
Description of Gelidibacter japonicus sp. nov., isolated from the Inland Sea(Setonaikai) in Japan.
H. Doi and I. Osawa
Archives of Microbiology, 2019, 201, 1019-1024. doi: https://doi.org/10.1007/s00203-019-01668-2
Anti-human EGFR2 monoclonal antibody H2Mab-41 exerts antitumor activity in a mouse xenograft model of colon cancer.
Y. Kato, T. Ohishi, S. Yamada, S. Itai, J. Takei, M. Sano, T. Nakamura, H. Harada, M. Kawada and MK. Kaneko
Monoclon. Antib. Immunodiagn. Immunother., 2019, 38, 157-161.
Generation and evaluation of a chimeric antibody against coxsackievirus and adenovirus receptor for cancer therapy
S. Sakamoto, H. Inoue, M. K. Kaneko, S. Ogasawara, M. Kajikawa, S. Urano, S. Ohba, Y. Kato and M. Kawada
Cancer Sci., 2019, 110, 3595-3602.
Intervenolin suppresses gastric cancer cell growth through the induction of TSP-1 secretion from fibroblast-like stromal cells.
J. Yoshida, H. Abe,T. Watanabe and M. Kawada
Oncol. Lett. 2018, 16, 6777-6785
Structure-activity relationship study of Leucinostatin A, a modulator of tumor-stroma interaction.
H. Abe, M. Kawada, C. Sakashita, T. Watanabe and M. Shibasaki
Tetrahedoron 2018, 74, 5129-5137
Microbial metabolites and derivatives targeted at inflammation and bone diseases therapy: chemistry, biological activity and pharmacology.
H. Adachi, K. Nakae, S. Sakamoto, C. Nosaka, S. Atsumi, M. Shibuya, N. Higashi, M. Nakajima, T. Irimura and Y. Nishimura
J. Antibiot. 2018, 71, 60-71
Novel approaches for identification of anti-tumor drugs and new bioactive compounds.
M. Kawada, S. Atsumi, S. Wada and S. Sakamoto
J. Antibiot. 2018, 71, 39-44
Valgamicin C, a novel cyclic depsipeptide containing the unusual amino acid cleonine, and related valgamicins A, T and V produced by Amycolatopsis sp. ML1-hF4.
H. Hashizume, K. Iijima, K. Yamashita, T. Kimura, S. Wada, R. Sawa and M. Igarashi
J. Antibiot. 2018, 71, 129-134
ATP Depletion Assay Led to the Isolation of New 36-Membered Polyol Macrolides Deplelides A and B from Streptomyces sp. MM581-NF15.
T. Takeuchi, M. Hatano, M. Umekita, C. Hayashi, S. Wada, M. Nagayoshi, R. Sawa, Y. Kubota, M. Kawada, M. Igarashi and M. Shibasaki
Org. Lett. 2017, 19, 4207-4210
Structures and biological activities of novel 4’-acetylated analogs of chrysomycins A and B.
S. Wada, R. Sawa, F. Iwanami, M. Nagayoshi, Y. Kubota, K. Iijima, C. Hayashi, Y. Shibuya, M. Hatano, M. Igarashi and M. Kawada
J. Antibiot. 2017, 70, 1078-1082
Catalytic asymmetric total synthesis and stereochemical revision of leucinostatin A, a modulator of tumor-stroma interaction.
H. Abe, H. Ouchi, C. Sakashita, M. Kawada, T. Watanabe and M. Shibasaki
Chem. Eur. J. 2017, 23, 11792-11796
Antipodocalyxin antibody chPcMab-47 exerts antitumor activity in mouse xenograft models of colorectal adenocarcinomas.
MK. Kaneko, A. Kunita, S. Yamada, T. Nakamura, M. Yanaka, N. Saidoh, YW. Chang, S. Handa, S. Ogasawara, T. Ohishi, S. Abe, S. Itai, H. Harada, M. Kawada, Y. Nishioka, M. Fukayama and Y. Kato
Monoclon Antib Immunodiagn Immunother. 2017, 36, 157-162
Acremopeptin, a new peptaibol from Acremonium sp. PF1450.
M. Iijima, M. Amemiya, R. Sawa, Y. Kubota, T. Kunisada, I. Momose, M. Kawada and M. Shibasaki
J. Antibiot. 2017, 70, 791-794
Vibrio japonicus sp. nov.,a novel member of the Nereis clade in the genus Vibrio isolated from the coast of Japan.
H. Doi, I. Osawa, H. Adachi and M. Kawada
PLoS ONE 12(2):e0172164. 2017, doi: 10.1371/journal.pone.0172164
A novel monoclonal antibody targeting coxsackie virus and adenovirus receptor inhibits tumor growth in vivo
M. Kawada, H. Inoue, M. Kajikawa, M. Sugiura, S. Sakamoto, S. Urano, C. Karasawa, I. Usami, M. Futakuchi and T. Masuda.
Sci. Rep. 2017, 7:40400 doi: 10.1038/srep40400.
Stability and bioavailability of lentztrehaloses A, B, and C as replacements for trehalose.
S. Wada, R. Sawa, S. Ohba, C. Hayashi, M. Umekita, Y. Shibuya, K. Iijima, F. Iwanami and M. Igarashi.
J. Agric. Food Chem. 2016, 64, 7121-7126.
Small molecules modulating tumor-stromal cell interactions: new candidates for anti-tumor drugs.
M. Kawada
J. Antibiot. 2016, 69, 411-414.
Biological activities of unique isoflavones prepared from Apios americana Medik.
H. Kaneta, M. Koda, S. Saito, M. Imoto, M. Kawada, Y. Yamazaki, I. Momose and K. Shindo.
Biosci Biotechnol Biochem. 2016, 80, 774-778.
Report on the use of non-clinical studies in the regulatory evalution of oncology drugs.
Y. Hayakawa, M. Kawada, H. Nishikawa, T. Ochiya, H. Saya, H. Seimiya, R. Yao, M. Hayashi, C. Kai, A. Matsuda, T. Naoe, A. Ohtsu, T. Okazaki, H. Saji, M. Sata, H. Sugimura, Y. Sugiyama, M. Toi and T. Irimura.
Cancer Sci. 2016, 107, 189-202.
New anti-cancer chemicals Ertredin and its derivatives, regulate oxidative phosphorylation and glycolysis and suppress sphere formation in vitro and tumor growth in EGFRvIII-transformed cells.
S. Atsumi, C. Nosaka, H. Adachi, T. Kimura, Y. Kobayashi, H. Takada, T. Watanabe, S. Ohba, H. Inoue, M. Kawada, M. Shibasaki, M. Shibuya.
BMC Cancer. 2016, 19, doi: 10.1186/s12885-016-2521-9
Coccoquinones A and B, new anthraquinone derivatives produced by Staphylotrichum coccosporum PF1460
D. Tatsuda, M. Amemiya, R. Sawa, K. Sumiyoshi, T. Watanabe, I. Momose, M. Kawada, A. Nomoto and M. Shibasaki.
J. Antibiot. 2016, 69, 176-178.
A novel anti-microtubule agent with carbazole and benzohydrazide structures suppresses tumor cell growth in vivo.
M. Ohira, Y. Iwasaki, C. Tanaka, M. Kuroki, N. Matsuo, T. Kitamura, M. Yukuhiro, H. Morimoto, N. Pang, B. Liu, T. Kiyono, M. Amemiya, K. Tanaka, K. Yoshida, N. Sugimoto, T. Ohshima and M. Fujita.
Biochim Biophys Acta. 2015, 1850, 1676-1684
がんと間質の相互作用を利用したがんの抑制
川田 学、吉田潤次郎、坂本修一
実験医学(増刊)2015, 33, 199-203
New metastatic model of human small-cell lung cancer by orthotopic transplantation in mice.
S. Sakamoto, H. Inoue, S. Ohba, Y. Kohda, I. Usami, T. Masuda, M. Kawada and A. Nomoto.
Cancer Science.2015,106,367-374
Quinofuracins A-E, produced by the fungus staphylotrichum boninense PF1444, show p53-dependent growth suppression.
D. Tatsuda, I. Momose, T. Someno, R. Sawa, Y. Kubota, M. Iijima, T. Kunisada, T. Watanabe, M. Shibasaki and A. Nomoto.
J. Nat. Prod. 2015,78,188-195
Novel autophagy inducers lentztrehaloses A, B and C
S. Wada, Y. Kubota, R. Sawa, M. Umekita, M. Hatano, S. Ohba, C. Hayashi, M. Igarashi and A. Nomoto.
J. Antibiot. 2015, 68, 521-529
Synthesis and determination of absolute configuration of lentztrehalose A
M. Zhang, S. Wada, F. Amemiya, T. Watanabe and M. Shibasaki
Chem. Pharm. Bull. 2015, 63, 961-966
Androprostamines A and B, the new anti-prostate cancer agents produced by Streptomyces sp. MK932-CF8.
Y. Yamazaki, T. Someno, M. Igarashi, N. Kinoshita, M. Hatano, M. Kawada, I.Momose and A. Nomoto.
J. Antibiot. 2014, 68, 279-285.
Inhibition of protein SUMOylation by davidiin, an ellagitannin from Davidia involucrate.
M. Takemoto, Y. Kawamura, M. Hirohama, Y. Yamaguchi, H. Handa, H. Saitoh, Y. Nakao,
M Kawada, K. Khalid, H. Koshino, K. Kimura, A. Ito and M. Yoshida.
J. Antibiot. 2014, 67, 335-338.
Modulation of tumor-stromal cell interactions: a new anti-tumor strategy targeting the tumor microenvironment.
M. Kawada, S. Sakamoto and A. Nomoto.
Forum on Immunopathological Diseases and Therapeutics 2013, 4, 53-62.
がん-間質相互作用を介したがん細胞の増殖抑制
川田学、坂本修一
Medical Science Digest 2013, 39, 24-27.
Synthesis of intervenolin, an antitumor natural quinolone with unusual substituents.
H. Abe, M. Kawada, H. Inoue, S. Ohba, A. Nomoto, T. Watanabe and M. Shibasaki.
Org. Lett. 2013, 15, 2124-2127.
Structure-activity relationship study of intervenolin derivatives:
synthesis, antitumor and anti-Helicobacter Pylori activities. H. Abe, M. Kawada, H. Inoue, S. Ohba, T. Masuda, C. Hayashi, M. Igarashi, A. Nomoto, T. Watanabe and M. Shibasaki.
Tetrahedron 2013, 69, 7608-7617.
Intervenolin, a new antitumor compound with anti-Helicobacter pylori activity, from Nocardia sp. ML96-86F2.
M. Kawada, H. Inoue, S. Ohba, M. Hatano, M. Amemiya, C. Hayashi, I. Usami, H. Abe, T. Watanabe, N. Kinoshita, M. Igarashi, T. Masuda, D. Ikeda and A. Nomoto.
J. Antibiot. 2013, 66, 543-548.
Structure and biological properties of lentztrehalose: a novel trehalose analog.
S. Wada, S. Ohba, T. Someno, M. Hatano and A. Nomoto.
J. Antibiot. 2013, 67, 319-322.
Structure-activity relationship study of intervenolin derivatives:
synthesis, antitumor and anti-Helicobacter Pylori activities.
H. Abe, M. Kawada, H. Inoue, S. Ohba, T. Masuda, C. Hayashi, M. Igarashi,
A. Nomoto, T. Watanabe and M. Shibasaki.
Tetrahedron 2013, 69, 7608-7617.
Vegfrecine, an inhibitor of VEGF receptor tyrosine kinases isolated
from the culture broth of Streptomyces sp.
C. Nosaka, H. Adachi, R. Sawa, K. Nakae, S. Atsumi, N. Kinoshita, Y. Kubota,
M. Igarashi, Y. Sei, K. Yamaguchi, M. Shibuya, Y. Nishimura and Y. Akamatsu.
J. Natural Products 2013, 76, 715-719.
Amycolamicin: a novel broad-spectrum antibiotic inhibiting bacterial topoisomerase.
R. Sawa, Y. Takahashi, H. Hashizume, K. Sasaki, Y. Ishizaki, M.Umekita, M. Hatano, H. Abe, T. Watanabe, N. Kinoshita, Y. Homma, C. Hayashi, K. Inoue, S. Ohba, T. Masuda, M. Arakawa, Y. Kobayashi, M. Hamada, M. Igarashi, H. Adachi, Y. Nishimura and Y. Akamatsu.
Chem. Eur. J. 2012, 18, 15772-15781.
In vivo imaging of proteasome inhibition using a proteasome-sensitive fluorescent reporter.
I. Momose, D. Tatsuda, S. Ohba, T. Masuda, D. Ikeda and A. Nomoto.
Cancer Sci. 2012, 103, 1730-1736.
Cleavage mechanism and anti-tumor activity of 3,6-epidioxy-1,10-bisaboladiene isolated from edible wild plants.
K. Kimura, Y. Sakamoto, N. Fujisawa, S. Uesugi, N. Aburai, M. Kawada,
S. Ohba, T. Yamori, E. Tsuchiya and H. Koshino.
Bioorg. Med. Chem. 2012, 20, 3887-3897.
Decalpenic acid induces early osteoblastic markers in pluripotent mesenchymal cells via activation of retinoic acid receptor gamma.
S. Sakamoto, F. Kojima, I. Momose, M. Kawada, H. Adachi and Y. Nishimura.
Biochem. Biophys. Res. Commun. 2012, 422, 751-757.
Decalpenic acid, a novel small molecule from Penicillium verruculosum CR37010, induces early osteoblastic markers in pluripotent mesenchymal cells.
S. Sakamoto, F. Kojima, M. Igarashi, R. Sawa, M. Umekita, Y. Kubota, K. Nakae, S. Yamaguchi, H. Adachi, Y. Nishimura and Y. Akamatsu.
J. Antibiot. 2010, 63, 703-708.
Increased ABCB1 expression in TP-110-resistant RPMI-8226 cells.
M. Iijima, I. Momose and D. Ikeda.
Biosci. Biotechnol. Biochem. 2010, 74, 1913-1919.
Citric acid inhibits a bacterial ceramidase and alleviates atopic dermatitis in an animal
model.
H. Inoue, T. Someno, M. Kawada and D. Ikeda.
J. Antibiot. 2010, 63, 611-613.
NBRI16716A, a new antitumor compound against human prostate cancer cells, produced by Perisporiopsis melioloides Mer-f16716.
M. Kawada, T. Someno, H. Inoue, S. Ohba, T. Masuda, T. Kato and D. Ikeda.
J. Antibiot. 2010, 63, 319-323.
NBRI17671, a new antitumor compound, produced by Acremonium sp. CR17671.
M. Kawada, I. Usami, T. Someno, T. Watanabe, H. Abe, H. Inoue, S. Ohba, T. Masuda, Y. Tabata, S. Yamaguchi and D. Ikeda.
J. Antibiot. 2010, 63, 237-243.
Mitochondrial inhibitors show preferential cytotoxicity to human pancreatic cancer PANC-1 cells under glucose-deprived conditions.
I. Momose, S. Ohba, D. Tatsuda, M. Kawada, T. Masuda, G. Tsujiuchi, T. Yamori, H. Esumi and D. Ikeda.
Biochem. Biophys. Res. Commun. 2010, 392, 460-466.
Rubratoxin A specifically and potently inhibits protein phosphatase 2A and suppresses cancer metastasis.
S. Wada, I. Usami, Y. Umezawa, H. Inoue, S. Ohba, T. Someno, M. Kawada and D. Ikeda.
Cancer Sci. 2010, 101, 743-750.
Leucinostatin A inhibits prostate cancer growth through reduction of insulin-like growth factor-I expression in prostate stromal cells.
M. Kawada, H. Inoue, S. Ohba, T. Masuda, I. Momose and D. Ikeda.
Int. J. Cancer 2010, 126, 810-818.
New atpenins, NBRI23477 A and B, inhibit the growth of human prostate cancer cells.
M. Kawada, I. Momose, T. Someno, G. Tsujiuchi and D. Ikeda.
J. Antibiot. 2009, 62, 243-246.
Ceramidastin, a novel bacterial ceramidase inhibitor, produced by Penicillium sp. Mer-f17067.
H. Inoue, T. Someno, T. Kato, H. Kumagai, M. Kawada and D. Ikeda.
J. Antibiot. 2009, 62, 63-67.
Phthoxazolin A inhibits prostate cancer growth by modulating tumor-stromal cell
interactions.
M. Kawada, H. Inoue, I. Usami and D. Ikeda.
Cancer Sci. 2009, 100, 150-157.
A new terrein glucoside, a novel inhibitor of angiogenin secretion in tumor angiogenesis.
M. Arakawa, T. Someno, M. Kawada and D. Ikeda.
J. Antibiot. 2008, 61, 442-448.
Transforming growth factor-β1 modulates tumor-stromal cell interactions of prostate cancer through insulin-like growth factor-I.
M. Kawada, H. Inoue, M. Arakawa and D. Ikeda.
Anticancer Res. 2008, 28, 721-730.